Drawings throughout childhood​

In modern times, almost all children learn to draw – and are prolific producers of drawings throughout childhood. Yet consider how much effort it takes to actually “draw a phone” – one has to both access the mental representation of “a phone” and then communicate this via a few well-placed strokes. What might children’s drawings reveal about how they represent the world around them?  For this project, we are collecting a large-scale database of children’s drawings behaviors via an iPad interface, and analyzing these drawings using a variety of computational methods, including deep neural networks trained to recognize objects.


Long, B.Fan, J. E., Frank, M. C. (2018). Drawings as a window into developmental changes in object representations. Proceedings of the 40th Annual Meeting of the Cognitive Science Society [pdf] [repository] [vss poster]

Long, B., Fan, J., Chai, Z., & Frank, M. C. (2019). Developmental changes in the ability to draw distinctive features of object categories. Proceedings of the 41st Annual Conference of the Cognitive Science Society. [pdf] [repository]

What do infants see?​

What are the actual statistics of infants' visual experience, and how does infants' view of the world change as they go from sitting to crawling to walking? This project analyzes videos take from the infant perspective with modern computer vision models, aiming to understand the natural structure in the visual input and how this structure scaffolds early learning. 


Sanchez*, A.Long*, B.Kraus, A. M.Frank, M. C. (under review). Postural developments modulate children's visual access to social information. [pdf] [repository]​ [cogsci poster]

Size Stroop Paradigm

single subject example

Meaning from mid-level features


One might intuit that we need to recognize what a depicted object is before we know whether it is alive or how big or small it is in the real-world. However, in a series of studies we have found that there are common mid-level features that characterize animals, small objects (e.g., cups, pens) and big objects (e.g., cars, couches). As a result, we still have expectations about the animacy and real-world size of unrecognizable “texforms” – textures that preserve the coarse form of an object.  These unrecognizable texforms can also automatically trigger real-world size processing -- suggesting that basic-level recognition is not always a gateway to real-world size processing. Most recently, we have found that these features also elicit animacy and size responses in ventral visual cortex.


Broadly, this line of work asks when mid-level features are sufficient for cognitive and neural processes that seem to rely on recognition. 



Long, B., Yu., C.P., & Konkle, T. (2018). Mid-level visual features explain the high-level categorical organization of the ventral stream. Proceedings of the National Academy of Sciences. [pdf] [repository]

Long, B. & Konkle, T. (2017). A familiar Size-Stroop effect in the absence of basic-level recognition. Cognition. (pdf)

Long, B., Störmer, V.S., & Alvarez, G.A. (2017). Mid-level perceptual features contain early cues to animacy. Journal of Vision. (open access link)

Long, B., Konkle, T., Cohen, M.A., & Alvarez, G.A. (2016). Mid-level perceptual features distinguish objects of different real-world sizes. Journal of Experimental Psychology: General. (pdf)

How do we learn which bundles of visual features describe "animals", or that objects that are big in the real-world tend to be boxy?  I've started asking this question by transforming the same psychophysical paradigms we use with adults (e.g., visual search, Stroop paradigms) for preschoolers. Our current work suggests that preschoolers show the same signatures of animacy and object size representations in these tasks -- hinting that their perceptual representations are somewhat adult-like, and pointing towards an earlier developmental trajectory. We’ve also found some preliminary evidence that even one-year-olds seem to process the real-world sizes of depicted objects.

Long, B., Moher, M., Carey, S. E., & Konkle, T. (2019). Animacy and object size are reflected in perceptual similarity computations by the preschool years. Visual Cognition, 1-17. [repository] [pdf]

Long, B., Moher, M., Carey, S., & Konkle, T. (2019). Real-world size is automatically encoded in preschoolers’ object representations. Journal of Experimental Psychology: Human Perception and Performance [repository[pdf]

Long, B., Carey, S., & Konkle, T. (2016). Pre-verbal infants automatically activate real-world object size information. Poster presented at the annual meeting of the Vision Sciences Society. (pdf)

Developing representations of animacy and object size
Earlier work


Before my graduate work at Harvard, I spent two years in France working at Laboratoire de Sciences Cognitives et Psycholinguistic at École Normale Supérieure, earning a Masters degree.

For my master's thesis, I examined the neural processes that underlie infant’s ability to form new expectations about what will happen next. In this work, we used EEG to show that infants rapidly learned cross-modal statistical regularities (e.g., an arbitrary tone predicted that a flower would soon appear), and found that these regularities influenced both infants’ initial processing and ongoing processing of these visual events. 

I also spent a few years interested in cross-linguistic effects. During a yearlong Fulbright fellowship at ENS, I investigated phonological processing in infants, learning how to use NIRS (near infrared-spectroscopy) to measure neural processing in 14-month-olds. As an undergraduate, I was interested in the relationship between language and cognition: my earliest work found that Japanese and English speakers remember the agents of intentional and accidental events differently.


Kouider, S., Long, B., Le Stanc, L., Barbosa, L.S., Fievet, A.C., & Gelskov, S.  (2015). Neural dynamics of prediction and surprise in infants. Nature Communications, 6.

Minagawa-Kawai, Y., Cristia, A., Long, B., Vendelin, I., Hakuno, Y., Dutat, M., Filippin, L., Cabrol, D., and & Dupoux, E. (2013). Insights on NIRS sensitivity from a cross-linguistic study on the emergence of phonological grammar. Frontiers in Psychology  


Fausey, C., Long, B., Inamori, A., & Boroditsky, L. (2010). Constructing agency: the role of language. Frontiers in Cultural Psychology.